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Theory of spike spiral waves in a reaction-diffusion system
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~Received 28 August 1998!

We discovered a type of spiral wave solutions in reaction-diffusion systems—spike spiral wave, which
significantly differs from the spiral waves observed in the models of FitzHugh-Nagumo type. We present an
asymptotic theory of these waves in the Gray-Scott model@Chem. Sci. Eng.38, 29 ~1983!#. We derive the
kinematic relations describing the shape of this spiral, and find the dependence of its main parameters on the
control parameters. The theory does not rely on the specific features of the Gray-Scott model and thus is
expected to be applicable to a broad range of reaction-diffusion systems.@S1063-651X~99!09507-0#

PACS number~s!: 82.40.Ck, 05.70.Ln, 82.20.Mj
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Formation of rotating spiral waves~rotors! is one of the
most vivid and ubiquitous phenomena of nonlinear phys
@1–12#. These waves are observed in nonlinear optical me
@13#, chemical reactions of Belousov-Zhabotinsky type, ca
lytic reactions on crystal surfaces@6–8#, and in a variety of
biological systems: social amoebaeDictyostelium discoi-
deum@14#, Xenopusoocytes@15#, chicken retina@16#, and
the hearts of animals and man, where the formation of
spiral waves is responsible for cardiac arrythmias and
life-threatening condition of ventricular fibrillation@1,2,12#.

A generic model used to describe the spiral waves i
pair of reaction-diffusion equations of activator-inhibit
type @1–11#,

tu

]u

]t
5 l 2Du2q~u,h,A!, ~1!

th

]h

]t
5L2Dh2Q~u,h,A!, ~2!

where u is the activator, i.e., the variable with respect
which there is a positive feedback;h is the inhibitor, i.e., the
variable with respect to which there is a negative feedb
and which controls activator’s growth;q and Q are certain
nonlinear functions representing the activation and the in
bition processes;l andL are the characteristic length scal
and tu and th are the characteristic time scales of the ac
vator and the inhibitor, respectively; andA is the bifurcation
parameter. A considerable amount of studies was done
the excitable systems with the FitzHugh-Nagumo-type kin
ics ~N systems! ~see, for example, Refs.@1–9# and references
therein!. These systems are described by Eqs.~1! and ~2!
with L50, and the nonlinearity inq such that the nullcline of
Eq. ~1! is N shaped or invertedN shaped. The asymptoti
theory of the spiral waves inN systems witha5tu /th!1
andL50 was recently developed by Karma@17,18#.

The existence of the spiral waves in excitableN systems
is due to the ability of such systems to sustain travel
waves, the simplest of which is a solitary wave— the tra
eling autosoliton~AS! @1–11#. In N systems the equatio
q(u,h,A)50 has three roots:u i1 , u i2 , andu i3 , for fixed A
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andh5h i . For a!1 an AS consists of a front, which is
wave of switching from the stable homogeneous stateu
5uh and h5hh to the state withu5umax (uh5u i1 and
umax5ui3 for h i5hh) whose width is of orderl , and a back
of width of order l that follows the front some distancew
@ l behind the front. Thus in the AS the distribution ofu is a
broad pulse, while the value ofh slowly varies fromh
5hh to some valueh5hm in the back of the pulse, and the
slowly recovers fromhm to hh behind it. In the limit a
→0 the amplitude of the wave~the value ofumax) becomes
independent ofa, and the speedc does not exceed the valu
of order l /tu , with both umax andc determined only by the
nonlinearity inq.

At the same time, many excitable systems are descri
by Eqs.~1! and ~2! in which the nullcline of Eq.~1! is L or
V shaped. Examples of suchL systems are the well-known
Brusselator and the Gray-Scott models of autocatalytic re
tions and an example of aV system is the Gierer-Meinhard
model of morphogenesis@10#. Recently, we showed for the
excitable Brusselator@19# and the Gray-Scott model@20# that
they are also capable of propagating traveling wave
traveling spike AS. The properties of these AS’s are ess
tially different from those inN systems. The distribution ofu
in an AS has the form of a narrow spike whose amplitu
grows asa decreases and can become huge asa→0. In
contrast toN systems, in the spikeh varies abruptly and then
slowly recovers back tohh far behind the spike. The spee
of such an AS is always greater thanl /tu , and goes to in-
finity as a→0. Also, it is important to emphasize that in a
AS the front and the back are not separated by a large
tance, as inN systems. In this paper we will show that i
excitableL or V systems it may also be possible to exc
steadily rotating spiral waves and develop a theory of s
waves in the casea!1.

To be specific, we will consider the excitable (L50)
Gray-Scott model, which is described by the equations@21#

]u

]t
5Du1Au2h2u, ~3!
242 ©1999 The American Physical Society
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FIG. 1. ~a! Distributions ofũ andh̃ in the sharp front for a particular value ofÃ53.76; ~b! dependencec̃(Ã). Results of the numerica
solution of Eqs.~9! and ~10!.
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52u2h112h, ~4!

where we chosel and tu as the units of time and length
respectively. Recently, we showed numerically that stea
rotating spiral waves may be excited in this model at su
ciently smalla @20#. From these simulations one can see t
the spiral wave is a steadily rotating slightly curved sha
spike front of width of order 1 which in the cross sectio
looks like a periodic traveling wave train~sufficiently far
from the core!. We would like to emphasize that it is thi
kind of concentration profile that is experimentally observ
in the Belousov-Zhabotinsky reaction@22,23#.

Let us derive the equation of motion for the travelin
sharp front in the Gray-Scott model witha!1. Sinceh var-
ies slowly outside the front, it can be replaced by a cons
valueh5h i ahead of the front. Let us introduce self-simil
variablez5r2ct, wherer is the coordinate along the no
mal direction to the front. For definiteness we will assum
that c.0, which means that the front is moving in the1z
direction. In the sharp front the value ofu is large@20#, so
one can neglect the last two terms in Eq.~4!. Therefore, in
the presence of small curvatureK, Eqs. ~3! and ~4! can be
written as

d2u

dz2 1~c1K !
du

dz
1Au2h2u50, ~5!

a21c
dh

dz
2u2h50. ~6!

These equations have to be supplemented by the boun
conditionsu(6`)50 andh(1`)5h i , where the infinity
actually means sufficiently far ahead of the front compa
to the front thickness.

Let us introduce the new variables

ũ5a1/2uS c1K

c D 1/2

, h̃5
h

h i
, ~7!

and the quantities

Ã5Aa21/2h i S c

c1K D 1/2

, c̃5c1K. ~8!

In these variables Eqs.~5! and ~6! become
ly
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d2ũ

dz2 1 c̃
dũ

dz
1Ãũ2h̃2 ũ50, ~9!

c̃
dh̃

dz
2 ũ2h̃50, ~10!

with the boundary conditionh̃(1`)51. Observe that alla,
A, andh i dependences now enter only via the parameterÃ.

Equations~9! and ~10! can be solved numerically~see
also Ref.@20#!. This numerical solution shows that the di
tribution of ũ indeed has the form of a spike@Fig. 1~a!#. In
the spike,h̃ varies fromh̃51 atz51` ~ahead of the front!
to someh̃5h̃min at z52` ~behind the front!; see Fig. 1~a!.
The value ofũ;1 in the spike, so in the original variable
we indeed haveu;a21/2@1 @see Eq.~7!#. The speed of the
front c̃ as a function ofÃ obtained from the numerical solu
tion of Eqs.~9! and ~10! is presented in Fig. 1~b!. One can
see that this solution exists only atÃ.Ãb , and its speed is
always greater thanc5cmin , where

Ãb53.76, cmin51.5 ~11!

The numerical analysis of Eqs.~9! and ~10! also shows that
h̃min5h̃ min

b 50.05 atÃ5Ãb , and rapidly decreases asÃ in-
creases.

From Eq.~8!, it immediately follows that for smallK the
correctiondc to the velocityc due to curvature is

dc52KS 11
Ã

2c̃

dc̃

dÃ
D , ~12!

where on the right-hand sideÃ, c̃, anddc̃/dÃ are evaluated
at K50. Also, as we showed in Ref.@20#, for Ã not in the
immediate vicinity ofÃb with good accuracyc̃50.86Ã and
h̃min50. Then, going back to the original variables, we m
write

c5c`2aK, ~13!

where

c`50.86Aa21/2h i , a5 3
2 . ~14!
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Note the anomalous coefficient multiplying the curvature
Eqs.~12! and~13!. Observe that this effect was recently stu
ied numerically inN systems with imperfect time scale sep
ration @24,25#.

Behind the sharp front the value ofh drops fromh i to
hmin , and u goes exponentially to zero@20#. On the much
longer time scalea21 the value ofh recovers fromhmin
according to Eq.~4!, in which outside of the front the term
2u2h can be neglected. From this we obtain that, after
front passes a pointx at time t i5t i(x) we have

h~x,t !512@12hmin~ t i !#e
2a(t2t i ), ~15!

where hmin5hih̃min . In a steadily rotating spiral wave w
must haveh(x,t i1T)5h i(t i)5const, whereT52p/v and
v is the angular frequency of the rotation of the spir
Therefore, the spiral should be described by Eq.~13! with
c`5const, which is in turn related tov. This equation was
first analyzed by Burton, Cabrera, and Frank~BCF! for
growth of screw dislocations on crystal surfaces@26# ~see
also Ref.@9#!. They calculated the shape of the spiral and
frequency in the case where the tip of the spiral is at r
Applying their results to Eq. ~14!, we obtain v
50.16a21A2h i

2 , where for simplicity we used the expre
sions in Eq.~14! and puthmin50. SinceAh i*a1/2 in order
for the front to be able to propagate, we must havev*1, so
one can expand the exponential in Eq.~15!, and obtainh i
53.4a2/3A22/3 andv51.8a1/3A2/3. The spatial steph of the
spiral far from the core will beh510a21/6A21/3. Notice that
a similar method was recently used to analyze asymptotic
the spiral waves inN systems@17,18#.

Comparing the results obtained above with Eq.~11!, one
can see that in order for the solution in the form of t
traveling front to exist, one should haveA*a21/2@1. On the
other hand, forA@a21/2, we havev@1, sou will not have
enough time to decay behind the wave front. This means
this kind of the spiral wave may exist only atA;a21/2.
Notice that according to Eq.~14! we havec`;1 andh;1
-

e
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s
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for these values ofA, so the formulas obtained above for th
frequency of the spiral should only be correct qualitativel

WhenAbT,A!a21/2, whereAbT53.76a1/2 is the excit-
ability threshold which is obtained from Eq.~11! for h i
5hh51 @20#, the structure of the spiral wave solutio
changes. For these values ofA the spiral acquires a core o
radiusR@1. Obviously, we haveh5hh51 in the core. The
reason the front will not propagate inside the core is that
spiral tip which moves along the core boundary is right at
propagation threshold. If this were not true, a small incre
of the front curvature near the tip would allow its motio
inside the core whereh.h i @see Eq.~15!#, which would in
turn increase the front’s speed@see Eq.~14!#, making the
circular motion of the tip unstable. For cores of radiusR
@1 one can neglect the curvature at the tip and assume
h i5h i

b53.76a1/2A21 in the limit a→0. The frequencyv is
then determined by Eq.~15!, with h i5h i

b . In particular, for
a1/2!A!a21/2, we can expand the exponential and asym
totically obtain

v51.76a1/2A. ~16!

This equation shows that the value ofv lies in the rangea
&v&1, as should be expected.

Far away from the core the speedc should only slightly
exceed cmin , so the step of the spiral will beh
55.4a21/2A21. Note, however, that because of the closen
to the threshold pointÃ5Ãb the expansion in Eq.~12! is no
longer justified, and therefore the BCF theory, as well as
~13!, is not applicable to the spiral waves in this parame
range. This theory can be modified by noting that close toÃb
we have, approximately,

c5cmin1bS Ã2Ãb2
Ãb

2cmin
K D 1/2

, ~17!

whereb is a constant and the tilde quantities in the righ
hand side are evaluated atK50. The analysis of Eqs.~9! and
~10! shows thatb51.4. Note that this equation reduces
FIG. 2. Steadily rotating spiral wave:~a! Result of the numerical solution of Eq.~18! with v50.47 andÃ2Ãb50.49 ~the circle shows
the core of the spiral!; ~b! Result of the numerical solution of Eqs.~3! and~4! with A52 anda50.1 ~distribution ofu!. The system is 100
3100.
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the form of Eq.~13! only very far from the core. Also note
that an equation of this kind was introduced by Zykov forN
systems without strong separation of time scales@2#.

Following Ref.@26#, we rewrite Eq.~17! for the steadily
rotating spiral in terms of the anglef between the tangen
vector to the front and the radius vector as a function of
distancer to the origin. A straightforward calculation show
that in these variables Eq.~17! becomes

df

dr
52

1

r
tanf

1
2cmin

Ãbb2 cosf
@b2~Ã2Ãb!2~cmin2vr cosf!2#,

~18!

with the boundary conditionsf(1`)5p/2 @26# and f(R)
50. The latter condition shows that at its tip the front
normal to the circle along which it rotates, which also fo
lows from the stability considerations for the tip. Since t
front at r 5R is at the propagation threshold, its normal v
locity there should be equal tocmin , soR5cmin /v. Knowing
the value ofR, one can then calculateÃ2Ãb as a function of
v. The numerical solution of Eq.~18! shows that forv!1
we haveÃ2Ãb50.93v4/5. Note that with good accurac
this formula is valid even forv*1. Knowing the value ofÃ
and henceh i5Ãa1/2A21, one can then find a unique valu
of v for which it agrees with Eq.~15!. Since forv!1 we
haveÃ2Ãb!1, Eq. ~16! should indeed be recovered in th
limit a→0 with a1/2!A!a21/2, with the spiral wave solu-
tion close to an involute of a circle of radiusR @3#. For a
particular value ofv50.29 we findh i50.86, within 4%
agreement with Eq.~15!. Comparing these quantities wit
the results of the numerical simulations of Eqs.~3! and ~4!
for a50.1 andA51.5, in which this value ofv was ob-
served, we find that the value ofh i agrees with the predicte
one within 3% accuracy. The speedc`52.3 obtained from
Eq. ~17! also agrees with that observed numerically within
ia

.

e

-

few percent accuracy. The comparison of the shapes of
spiral obtained from the solution of Eq.~18! and from the
numerical simulations~for slightly different parameters! is
presented in Fig. 2. This agreement is quite remarkable c
sidering the fact that at these parameters the spiral w
already underwent meandering instability. In fact, accord
to our analysis, a steady rotation of the spiral requires a
tuning of the value ofh i at the tip of the spiral. Note that th
tip of the spiral is not described by the interfacial equatio
derived above, and thus is a rather singular object capab
sudden movements on the smallest length scale. Thus
natural to expect that the tip trajectory in a meandering sp
may be rather abrupt. Notice that a similar situation is o
served in the simulations of models of cardiac tissue~see, for
example, Ref.@27#!.

In conclusion, we developed a theory of spike spi
waves in the Gray-Scott model. Spike traveling waves
observed in a variety of excitable systems including ne
and cardiac tissue. Even though we performed an analys
a concrete system, Eqs.~17! and~18! have a general charac
ter and thus are expected to apply to otherL andV systems
~see also Refs.@10, 11#! and other excitable systems of di
ferent nature in which spike traveling waves are observ
Also, such waves can be expected in combustion syst
and the Belousov-Zhabotinsky reaction in continuous fl
reactors. Indeed, although in Eqs.~1! and ~2! describing
these systems, the activator nullcline may formally beN
shaped, for typical parameters the value ofumax may be sev-
eral orders of magnitude greater thanuh , so the system ef-
fectively behaves as aL or V system. In particular, this is
true for models of systems with uniformly generated co
bustion material@10,11# and the two-parameter version o
the Oregonator@28#. Recent numerical simulations of th
Oregonator showed that it has the same curvature-velo
relationship as in Eq.~17! @25#.
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