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Theory of spike spiral waves in a reaction-diffusion system
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We discovered a type of spiral wave solutions in reaction-diffusion systems—spike spiral wave, which
significantly differs from the spiral waves observed in the models of FitzHugh-Nagumo type. We present an
asymptotic theory of these waves in the Gray-Scott mg@alem. Sci. Eng38, 29 (1983]. We derive the
kinematic relations describing the shape of this spiral, and find the dependence of its main parameters on the
control parameters. The theory does not rely on the specific features of the Gray-Scott model and thus is
expected to be applicable to a broad range of reaction-diffusion sysit8a63-651X99)09507-0

PACS numbe(s): 82.40.Ck, 05.70.Ln, 82.20.Mj

Formation of rotating spiral wavesotorg is one of the and »=7%;. For «<1 an AS consists of a front, which is a
most vivid and ubiquitous phenomena of nonlinear physicsvave of switching from the stable homogeneous stéte
[1-12]. These waves are observed in nonlinear optical media- g, and 7= 7, to the state withd= 6, (6,=6;; and
[13], chemical reactions of Belousov-Zhabotinsky type, catay, =@, for ;= 5,) whose width is of ordet, and a back
lytic reactions on crystal surfacg6—8], and in a variety of  of width of order! that follows the front some distance
biological systems: social amoebdgictyostelium discoi- .| pehind the front. Thus in the AS the distribution ®fs a

deum[14], Xenopusoocytes[15], chicken retind16], and 054 pulse, while the value of slowly varies from 7

the hearts of animals and man, where the formation of the_ 7 to some valuey= 7., in the back of the pulse, and then

spiral waves is responsible for cardiac arrythmias and th%lowly recovers fromz, to #, behind it. In the limit a
m h .

life-threatening condition of ventricular fibrillatiof1,2,12. .
A generic model used to describe the spiral waves is a_’o the amplitude of the wavithe value o0foma) becomes

pair of reaction-diffusion equations of activator-inhibitor Independent Oh_’ and the speed does not gxceed the value
type [1-11], of or.derl/'rgz with both 6,,,, andc determined only by the
nonlinearity ing.
a0 At the same time, many excitable systems are described
Teﬁzl A6—q(0,7.A), D by Egs.(1) and(2) in which the nullcline of Eq(1) is A or
V shaped. Examples of such systems are the well-known
in Brusselator and the Gray-Scott models of autocatalytic reac-
Ty L An—Q(6,7,A), (2)  tions and an example of 4 system is the Gierer-Meinhardt
model of morphogenesid0]. Recently, we showed for the
where ¢ is the activator, i.e., the variable with respect to €xcitable Brusselatqd9] and the Gray-Scott modg20] that
which there is a positive feedbaci;is the inhibitor, i.e., the they are also capable of propagating traveling waves—
variable with respect to which there is a negative feedback@veling spike AS. The properties of these AS's are essen-
and which controls activator's growtl; and Q are certain  tially different from those ifN systems. The distribution af
nonlinear functions representing the activation and the inhil? @ AS has the form of a narrow spike whose amplitude
bition processes; andL are the characteristic length scales 9"0WS asa decreases and can become hugeaas0. In
and r, and 7, are the characteristic time scales of the acti-contrast taN systems, in the spike varies abruptly and then
vator and the inhibitor, respectively; aidis the bifurcation ~ Slowly recovers back tay, far behind the spike. The speed
parameter. A considerable amount of studies was done dff Such an AS is always greater théir,, and goes to in-
the excitable systems with the FitzHugh-Nagumo-type kinetfinity as @— 0. Also, it is important to emphasize that in an
ics (N systems (see, for example, RefiL—9] and references AS the fro_nt and the back are not separate_d by a Iarge_dls-
therein. These systems are described by E@3.and (2) tanc_:e, as irN systems. In. this paper we will g,how that in
with L =0, and the nonlinearity ig such that the nullcline of ~€xcitableA or V systems it may also be possible to excite
Eq. (1) is N shaped or invertedl shaped. The asymptotic steadlly rotating spiral waves and develop a theory of such
theory of the spiral waves iN systems witha=r7,/7,<1 ~ Wavesin the case<1. . _
andL =0 was recently developed by Karrfiz7,18. To be specific, we W|_II consmjer the excitablé £€0)
The existence of the spiral waves in excitabesystems ~ Gray-Scott model, which is described by the equatidig
is due to the ability of such systems to sustain traveling
waves, the simplest of which is a solitary wave— the trav-
eling autosoliton(AS) [1-11]. In N systems the equation 5_9_A9+A02 p 3
q(0,7n,A)=0 has three roots3;,, 6>, and 6,3, for fixed A at KR
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FIG. 1. (a) Distributions off and7 in the sharp front for a particular value Af=3.76; (b) dependencé&(A). Results of the numerical
solution of Eqs(9) and (10).

an d
-1 _ 2 _ ~ ~
a == 0Pytl-n, (4 2% +A6*H—6=0, 9

where we chosé and 7, as the units of time and length, e

respectively. Recently, we showed numerically that steadily 5_77_’[9277:0, (10)
rotating spiral waves may be excited in this model at suffi- dz

ciently smalle [20]. From these simulations one can see that

the spiral wave is a steadily rotating slightly curved sharpwith the boundary conditio(+ )= 1. Observe that alf,
spike front of width of order 1 which in the cross section A, and 7; dependences now enter only via the paramater
looks like a periodic traveling wave traisufficiently far Equations(9) and (10) can be solved numericallysee
from the cor¢. We would like to emphasize that it is this also Ref.[20]). This numerical solution shows that the dis-
kind of concentration profile that is experimentally observedintion of @ indeed has the form of a spik€ig. 1(a)]. In

in the Belousov-Zhabotinsky reacti¢g2,23. the spike varies from%=1 atz= +% (ahead of the front

Let us derive the equation of motion for the traveling SOMe” =", atz= — (behind the front see Fig. 1a).
sharp front in the Gray-Scott model with<1. Sinces var- o

ies slowly outside the front, it can be replaced by a constanTze.nVc?;léZ ﬁ?;ﬁ'n_tﬂze;lp'[kszesg '?7§?e_l_?lgg;naele\éagft?:zs
value »= 7; ahead of the front. Let us introduce self-similar wel Ve~ a aLol P

variablez=p—ct, wherep is the coordinate along the nor- front @ as a function ofA obtained from the numerical solu-
mal direction to the front. For definiteness we will assumetion of Egs.(9) and(10) is presented in Fig. (b). One can
that c>0, which means that the front is moving in thez see that this solution exists only At>A,, and its speed is
direction. In the sharp front the value éfis large[20], so  always greater than=c,,, where

one can neglect the last two terms in Ed). Therefore, in

the presence of small curvatuke Egs.(3) and(4) can be A,=3.76, Cp,=15 (12)
written as

420 40 The numerical analysis of Eq&) and (10) also shows that

Gz et o +AG2y— =0, (5)  Tmin=7 in=0.05 atA=A,, and rapidly decreases &sin-

z creases.
From Eq.(8), it immediately follows that for smaK the
a—lcd_” — ¢?9=0 6) correctionsc to the velocityc due to curvature is
dz '

These equations have to be supplemented by the boundary Sc=—K| 1+ iﬁ , (12)
conditions #(*+)=0 and n(+«)=7;, where the infinity 2C dA

actually means sufficiently far ahead of the front compared
to the front thickness.

Let us introduce the new variables where on the right-hand sidk, T, andd¢/dA are evaluated

at K=0. Also, as we showed in Reff20], for A not in the

n g [ctKVE g immediate vicinity ofA, with good accuracg=0.86A and
0=a™0 c M= Py (7 7min=0. Then, going back to the original variables, we may
write
and the quantities
c=c,—ak, (13
~ i C 1/2
— -1 =_
A=Aa ni(C-G-K , T=c+K. (8) where

In these variables Eq$5) and (6) become c.=0.86Aa Y2y, a

Il
Nl

(14
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Note the anomalous coefficient multiplying the curvature infor these values o\, so the formulas obtained above for the
Egs.(12) and(13). Observe that this effect was recently stud- frequency of the spiral should only be correct qualitatively.
ied numerically inN systems with imperfect time scale sepa- WhenAp,t<A<a~ Y2 whereA,;=3.76a? is the excit-
ration[24,25. ability threshold which is obtained from Edq11) for 7

Behind the sharp front the value of drops from#; to  =#5,=1 [20], the structure of the spiral wave solution
7min,» and @ goes exponentially to zerf20]. On the much changes. For these values Afthe spiral acquires a core of
longer time scalex™ ! the value of % recovers fromznmi radiusR>1. Obviously, we havej= n»,=1 in the core. The
according to Eq(4), in which outside of the front the term reason the front will not propagate inside the core is that the
— 6?7 can be neglected. From this we obtain that, after thespiral tip which moves along the core boundary is right at the
front passes a point at timet;=t;(x) we have propagation threshold. If this were not true, a small increase
of the front curvature near the tip would allow its motion
inside the core wherg> 7, [see Eq(15)], which would in
turn increase the front's speddee Eq.(14)], making the
circular motion of the tip unstable. For cores of radRs
where 7min=77min- 1N a steadily rotating spiral wave we >1 one can neglect the curvature at the tip and assume that
must haven(x,t; + T) = 7;(t;) = const, whereT=2m/w and 7= n°=3.762*>A" in the limit «— 0. The frequencyv is
w is the angular frequency of the rotation of the spiral.then determined by Eq15), with 7;= n?. In particular, for
Therefore, the spiral should be described by B@) with  a><A<a 2 we can expand the exponential and asymp-
C..=const, which is in turn related te. This equation was totically obtain
first analyzed by Burton, Cabrera, and Fra(&CF) for

. . — 1/2

growth of screw dislocations on crystal surfad@$] (see w=1.76a""A. (16)
also Ref[9]). They calculated the shape of the spiral and its__ . ) .
frequency in the case where the tip of the spiral is at rest! NS equation shows that the value @flies in the rangex

Applying their results to Eq.(14), we obtain o =w=1, as should be expected. .
=O.165flA27]i2, where for simplicity we used the expres- Far away from the core the speedshould only slightly

sions in Eq.(14) and putz,,,=0. SinceAn = a2 | exceed Cpnin, SO the step of the spiral will beh

in order  ~’ _ N,
for the front to be able to propagate, we must havel, so =5.4a"““A™ *. Note, however, that because of the closeness

one can expand the exponential in E#5), and obtainy;  t0 the threshold poinA=A,, the expansion in E¢12) is no
=3.4023A" 23 andw=1.8213A%3 The spatial step of the  longer justified, and therefore the BCF theory, as well as Eq.
spiral far from the core will bé=10a~Y6A~ 13 Notice that  (13), is not applicable to the spiral waves in this parameter
a similar method was recently used to analyze asymptoticallyange. This theory can be modified by noting that clos&gjo
the spiral waves iN systemg17,18. we have, approximately,

Comparing the results obtained above with ELl), one
can see that in order for the solution in the form of the
traveling front to exist, one should hawe= o~ ¥>>1. On the
other hand, foA> o~ Y2, we havew> 1, s0 6 will not have
enough time to decay behind the wave front. This means thathereb is a constant and the tilde quantities in the right-
this kind of the spiral wave may exist only &~ a2 hand side are evaluatediat=0. The analysis of Eq$9) and
Notice that according to Eq14) we havec,~1 andh~1 (10) shows thatb=1.4. Note that this equation reduces to

n(X,t)=1—[1— ppn(t;)Je” o7t (15

= 172
-~ A
C:Cmin+b A_Ab_ K) ’ (17)

2 min

40 20 0 20 40

FIG. 2. Steadily rotating spiral wavéa) Result of the numerical solution of E(L8) with «=0.47 andz\—z\b:OAQ(the circle shows
the core of the spiral (b) Result of the numerical solution of Eg®) and(4) with A=2 anda=0.1 (distribution of ). The system is 100
x100.
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the form of Eq.(13) only very far from the core. Also note few percent accuracy. The comparison of the shapes of the
that an equation of this kind was introduced by Zykov for  spiral obtained from the solution of E¢18) and from the
systems without strong separation of time sc@is numerical simulationgfor slightly different parametejsis
Following Ref.[26], we rewrite Eq.(17) for the steadily presented in Fig. 2. This agreement is quite remarkable con-
rotating spiral in terms of the angl¢ between the tangent sidering the fact that at these parameters the spiral wave
vector to the front and the radius vector as a function of th%“'eady underwent meandering |nstab|||ty In fact, according
distancer to the origin. A straightforward calculation shows tg our analysis, a steady rotation of the spiral requires a fine
that in these variables E¢L7) becomes tuning of the value ofy, at the tip of the spiral. Note that the
tip of the spiral is not described by the interfacial equations
— =——Ttang derived above, and thus is a rather singular object capable of
dr r sudden movements on the smallest length scale. Thus it is
) natural to expect that the tip trajectory in a meandering spiral
Crmin 2% RN _ 2 may be rather abrupt. Notice that a similar situation is ob-
- 'Abbz cosd:[b (A= Ap) = (Crin— @I COSH)7], served in the simulations of models of cardiac tis@es, for
example, Ref[27]).
(18 In conclusion, we developed a theory of spike spiral
. . waves in the Gray-Scott model. Spike traveling waves are
with the boundary conditiong(+)=m/2 [26] and (R) = ,pcarved in a va%/ety of excitable F;ystems incﬁjding nerve
=0. The latter _condltlon ShOV_VS t_hat at its t|p_the front is and cardiac tissue. Even though we performed an analysis of
normal to the circle along which it rotates, which also fol- a concrete system, Eq4.7) and(18) have a general charac-
lows from the stability considerations for the tip. Since theter and thus are e>’<pected to apply to otheandV systems
front atr =R is at the propagation threshold, its normal ve-

locity th hould b | - / ) (see also Refd.10, 11]) and other excitable systems of dif-
ocity there should be equal iy, SOR=Crnin/@. KNOWING o 0t nature in which spike traveling waves are observed.

the value ofR, one can then calculate— A, as a function of  Also, such waves can be expected in combustion systems
. The numerical solution of Eq18) shows that foro<1  and the Belousov-Zhabotinsky reaction in continuous flow
we haveA—A,=0.93»*%. Note that with good accuracy reactors. Indeed, although in Egdl) and (2) describing
this formula is valid even fow=1. Knowing the value oA  these systems, the activator nulicline may formally e
and hencey=AaY?A~, one can then find a unique value shaped, for typical p.arameters the valugdgf, may be sev-
of w for which it agrees with Eq(15). Since foro<1 we eraI_ orders of magnitude greater thep, so thg system ef-

~ o~ . _ fectively behaves as A or V system. In particular, this is
haveA—Ap<1, E(lq/.2(16) Sh?‘ﬂg indeed be recovered in the o for models of systems with uniformly generated com-
limit a—0 with a™*<A<a" %, with the spiral wave solu- ,qtion materia[10,11 and the two-parameter version of
tion close to an involute of a circle of radil® [3]. For 2 6 Oregonatof28]. Recent numerical simulations of the
particular value ofw=0.29 we find ,=0.86, within 4%

X ' i > QOregonator showed that it has the same curvature-velocity
agreement with Eq(15). Comparing these quantities with relationship as in Eq17) [25].

the results of the numerical simulations of E¢3). and (4)

for «=0.1 andA=1.5, in which this value ofw was ob- We would like to acknowledge valuable discussions with
served, we find that the value gf agrees with the predicted P. K. Brazhnik, A. Karma, J. P. Keener, and J. J. Tyson, and
one within 3% accuracy. The speed=2.3 obtained from the computational support from the Boston University Center
Eq. (17) also agrees with that observed numerically within afor Computational Science.
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